
How I use ggplot2
Paul Schmidt

2023-11-14

A brief introduction to ggplot2. Be warned: This chapter provides detailed
insight into certain aspects, while other components are not discussed at all.

Table of contents

1 Before we start 2
1.1 Who this is for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Other resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Packages to install & load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Showcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Let’s start 3

3 Saving and reusing plots 5

4 Axes 6
4.1 Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.3 Breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.5 Expand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Theme 17

6 Export 21

7 Color, Shape and More 23
7.1 General Aesthetic Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2 Aesthetic Mapping with aes() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3 More on color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1



8 End 34

1 Before we start

1.1 Who this is for

This tutorial serves as an introductory guide to ggplot2, tailored specifically for beginners with
no prior exposure to ggplot2. However, it’s worth mentioning that as we delve deeper into the
subject, we’ll employ both BaseR and tidyverse code for some data preparations.

In addition, this ggplot2 guide reflects my personal approach and application of visualization
techniques, focusing on the disciplines that align with the theme of this website - from agri-
cultural sciences to experimental data from biology or life sciences at large. This tutorial,
therefore, may not encompass all facets of ggplot2, but rather those elements that I frequently
utilize in these specific domains.

1.2 Other resources

Here are some other ggplot2 tutorials and resources that I like:

• Chapter 3: Data Visualisation in (Wickham and Grolemund 2017)
• Cédric Scherer’s (2022a) A ggplot2 tutorial for beautiful plotting in R
• Cédric Scherer’s (2022b) Graphic Design with ggplot2
• Andrew Heiss’ (2023) Data visualization with R
• Claus Wilke’s (2019) Fundamentals of Data Visualization

1.3 Packages to install & load

We are using the p_load() function of the {pacman} package to install and load all necessary
packages for this tutorial.

pacman::p_load(
ggplot2,
ggrepel,
ggtext
)

1.4 Showcase

Here are some beautiful ggplots

2

https://r4ds.had.co.nz/data-visualisation.html
https://www.cedricscherer.com/2019/08/05/a-ggplot2-tutorial-for-beautiful-plotting-in-r/
https://rstudio-conf-2022.github.io/ggplot2-graphic-design/
https://datavizs23.classes.andrewheiss.com/content/01-content.html
https://clauswilke.com/dataviz/
../misc/usefulthings.html#pacman


2 Let’s start

Let us start by creating a plot that requires a minimum amount of code, but is still informative.
We make use the PlantGrowth data, which is directly accessible in R.

ggplot(data = PlantGrowth,
mapping = aes(y = weight, x = group)) +

geom_point()

3.5

4.0

4.5

5.0

5.5

6.0

ctrl trt1 trt2
group

w
ei

gh
t

ggplot(data = PlantGrowth) +
aes(y = weight, x = group) +
geom_point()

3



3.5

4.0

4.5

5.0

5.5

6.0

ctrl trt1 trt2
group

w
ei

gh
t

Actually, you can see we created the same plot twice using slightly different code. Apologies
for immediately confusing you with this, but it would be even more confusing if we postpone
this topic.

Let’s try to understand the general approach by looking at the first version of the code. The
code for any ggplot always starts with the ggplot() function and then layers are added to it
via the + operator.

The data = argument in ggplot() is where you specify the dataset you want to visualize.
Think of it as telling ggplot “Here is the data I want you to work with.”

The mapping = aes() argument is where you define the aesthetic mappings, like which
columns of the data should be represented on the x and y axes. It’s like giving ggplot specific
instructions on “How should you represent this data?” For instance, mapping = aes(x =
column1, y = column2) would tell ggplot to use column1 for the x-axis and column2 for the
y-axis.

So, together, these two arguments form the fundamental instructions for any ggplot: “Here is
my data, and this is how I want you to represent it.”

Looking at our two versions of code that result in the same plot, you can see that they only
differ in how the aes() is included. The far more common approach is to include it inside the
ggplot() function as in the first version. However, I am not the only one who argues that the
second version is simply easier to read, which is why I am using it. Other than that, there is
no difference between the two versions.

4

https://twitter.com/sharoz/status/1559925104645136386


Finally, there is geom_point(). This function, known as a geometric object or “geom”, repre-
sents the type of plot you want to create. In ggplot2, every type of plot is associated with a
specific geom function. For our example,geom_point() is used to create a scatter plot, draws
a point for each observation. The geom_point() function is added to the base ggplot() call
using the + operator, just like the other layers. In this way, it’s as if we’re telling ggplot: “And
here is the type of plot I want you to create.”. Again - it already knows where to draw the
points because we told it about the data and aesthetic mapping.

Other geoms you might use include geom_boxplot() for boxplots, geom_line() for line graphs,
and many more. Each geom function has its own set of aesthetics and other arguments that
you can specify to customize your plot. By using these different geoms, you can create a wide
variety of plots to meet your specific data visualization needs.

Now you understand the absolute minimum of how to create a ggplot.

Additional Resources

• List of all geom_*() functons

3 Saving and reusing plots

In ggplot2, you can save your plots into an object. This allows you to reuse and modify your
plots without having to rewrite all the code. This is particularly useful when you are building
complex plots layer by layer.

Let’s take the plot we have created so far. Instead of writing the code for all the layers every
time, we can save the plot into an object and then add new layers to this object. This way, we
can focus on the new layers we are adding, making our code more readable and manageable.

Here’s how we can do this:

myplot <- ggplot(data = PlantGrowth) +
aes(y = weight, x = group) +
geom_point()

Be aware that when running this code, you will not get to see the plot you just saved. Instead,
you would need to run the myplot object to see the plot:

myplot

5

https://ggplot2.tidyverse.org/reference/#geoms
https://ggplot2.tidyverse.org/reference/#geoms


3.5

4.0

4.5

5.0

5.5

6.0

ctrl trt1 trt2
group

w
ei

gh
t

This approach of saving and reusing plots not only makes our code more readable and manage-
able, but also allows us to experiment with different layers and modifications without affecting
our original plot.

From now on, we will use this approach in our tutorial. At the end of each main section, we
will update myplot with the new layers we have discussed in that section. This will allow us
to build our plot step by step, focusing on one aspect at a time.

4 Axes

In ggplot2, the scale_x_* and scale_y_* functions are used to control the appearance of
the x and y axes, respectively. These functions allow you to set the scale type (continuous,
discrete, etc.), the axis labels, the tick mark labels, and the range of values displayed on the
axis.

Regarding the scale type, we need to use scale_y_continuous() (since weight is a continous,
metric variable) and scale_x_discrete() (since group is a discrete, categorical variable) for
our scatter plot.

6



4.1 Name

The name = allows you to change the axis titles.

myplot +
scale_y_continuous(name = "Weight (g)") +
scale_x_discrete(name = "Treatment Group")

3.5

4.0

4.5

5.0

5.5

6.0

ctrl trt1 trt2
Treatment Group

W
ei

gh
t (

g)

4.2 Limits

The limits = argument in the scale_*_* functions allows you to specify the range of values
displayed on the axis. This can be particularly useful when you want to focus on a specific
part of your data. Let’s see how this works in practice with our scatter plot example.

myplot +
scale_y_continuous(

name = "Weight (g)",
limits = c(0, 7)

) +
scale_x_discrete(

name = "Treatment Group",

7



limits = c("ctrl", "trt2")
)

0

2

4

6

ctrl trt2
Treatment Group

W
ei

gh
t (

g)

myplot +
scale_y_continuous(

name = "Weight (g)",
limits = c(0, NA)

) +
scale_x_discrete(

name = "Treatment Group",
limits = c("trt1", "ctrl", "trt2")

)

8



0

2

4

6

trt1 ctrl trt2
Treatment Group

W
ei

gh
t (

g)

In the left plot, we use the limits = argument in scale_y_continuous() to set the y-axis
to range from 0 to 7. This works as expected, showing all weights from 0 to 7. However,
including only “ctrl” and “trt2” (i.e. the first and last level) in the limits = argument of in
scale_x_discrete(), results in only these two groups being displayed on the x-axis. The key
point here is that for a discrete scale, the limits = argument needs to include all the levels
you want to display.

In the right plot, we again use the limits = argument in scale_y_continuous(), but this
time we only specify the lower limit (0) and use NA for the upper limit. This tells ggplot2
to start the y-axis at 0 and end it at the maximum value in the data, which is the default
behavior. For the x-axis, we provide all three levels (“trt1”, “ctrl”, “trt2”) in the limits =
argument of scale_x_discrete(). This not only ensures that all groups are displayed, but
also allows us to control the order in which they appear.

This demonstrates how the limits = argument can be used differently in scale_*_continuous()
and scale_*_discrete(). In a continuous scale, it defines the range of values, while in a
discrete scale, it specifies which levels to include and their order.

In the end, it’s important to note that setting the limits can exclude data outside the specified
range from the plot. This means that the excluded data will not be considered when calculating
statistics or generating geoms. In other words, while setting limits can help focus your plot
on specific aspects of your data, it can also exclude important information. Always consider
the implications of setting limits on your data visualization.

9



Additional Resources

• If you are wondering why I wanted the y-axis to start at 0, read this, this and this
• List of all scales functions

4.3 Breaks

The breaks = argument in these functions allows you to specify the locations of the tick marks
on the axis.

myplot +
scale_y_continuous(

name = "Weight (g)",
limits = c(0, NA),
breaks = c(0, 6)

) +
scale_x_discrete(

name = "Treatment Group"
)

0

6

ctrl trt1 trt2
Treatment Group

W
ei

gh
t (

g)

10

https://academy.datawrapper.de/article/326-why-our-column-and-bar-charts-start-at-zero
https://digitalblog.ons.gov.uk/2016/06/27/does-the-axis-have-to-start-at-zero-part-1-line-charts/
https://stats.stackexchange.com/questions/184525/how-to-determine-whether-or-not-the-y-axis-of-a-graph-should-start-at-zero
https://ggplot2.tidyverse.org/reference/index.html#scales


myplot +
scale_y_continuous(

name = "Weight (g)",
limits = c(0, NA),
breaks = seq(0, 6)

) +
scale_x_discrete(

name = "Treatment Group"
)

0

1

2

3

4

5

6

ctrl trt1 trt2
Treatment Group

W
ei

gh
t (

g)

In the left plot, we use the breaks = argument in scale_y_continuous() to set the y-axis
tick marks at 0 and 6. This really results in only two tick marks being displayed on the y-axis.
While this is not typically useful for data representation, it serves to illustrate that the breaks
= argument can be used to place tick marks at any specified values.

In the right plot, we use the seq() function in the breaks = argument to set the y-axis tick
marks at every integer value from 0 to 6. This provides a more informative view of the data,
as it allows us to see the weight values at regular intervals.

11



Tip

Instead of having to manually write “6” in breaks = seq(0, 6) you can instead do this:

• breaks = seq(0, max(PlantGrowth$weight)) automatically finds the maximum
value in the data

• breaks = scales::breaks_width(1) makes use of the breaks_width() function
in the {scales} package to simply define the width of the breaks

4.4 Labels

The labels = argument allows you to specify the text that is displayed for each tick mark on
the axis. This can be particularly useful when the values in your data are not self-explanatory
or when you want to use more descriptive labels.

myplot +
scale_y_continuous(

name = "Weight (g)",
limits = c(0, NA),
breaks = seq(0, 6)

) +
scale_x_discrete(

name = "Treatment Group",
labels = c("Control", "Treatment 1", "Treatment 2")

)

12

https://scales.r-lib.org/index.html


0

1

2

3

4

5

6

Control Treatment 1 Treatment 2
Treatment Group

W
ei

gh
t (

g)

myplot +
scale_y_continuous(

name = "Weight (g)",
limits = c(0, NA),
breaks = seq(0, 6)

) +
scale_x_discrete(

name = "Treatment Group",
labels = c(
ctrl = "Control",
trt1 = "Treatment 1",
trt2 = "Treatment 2"

)
)

13



0

1

2

3

4

5

6

Control Treatment 1 Treatment 2
Treatment Group

W
ei

gh
t (

g)

In the first example, we simply provide a vector of labels. This works fine as long as the levels
on the x-axis are in the same order as the labels in the vector. However, if the levels are not
in the expected order, the labels will be associated with the wrong levels.

In the second example, we provide a named vector of labels. This ensures that the labels are
correctly associated with their corresponding levels, regardless of the order of the levels. This
is why using a named vector is often the safer option.

Tip

You can also use labels = on continuous axes, if you make use of the label_*() functions
in the {scales} package. Here are some examples:

• labels = label_number() displays numbers on your axis any way you want. E.g.
decimal.mark = "." displays axis label 3.14 as 3,14 etc.

• labels = label_percent() displays axis labels 0.05, 0.4 as 5%, 40% etc.
• labels = label_log() displays axis labels 10, 100, 1000 as 101, 102, 103 etc.

4.5 Expand

The expand = argument in the scale_*_* functions allows you to control the expansion of the
scale. This is particularly useful when you want to adjust the space between the plotted data

14

https://scales.r-lib.org/reference/index.html#axis-labels
https://scales.r-lib.org/index.html


and the axes.

By default, ggplot2 adds a small amount of space around the data to ensure that the data
doesn’t overlap with the axes. However, there might be situations where you want to adjust
this space. For instance, you might want to remove the space below the 0 on the y-axis.

myplot +
scale_y_continuous(

name = "Weight (g)",
limits = c(0, NA),
breaks = seq(0, 6),
expand = c(0, 0)

) +
scale_x_discrete(

name = "Treatment Group",
labels = c(
ctrl = "Control",
trt1 = "Treatment 1",
trt2 = "Treatment 2"

)
)

0

1

2

3

4

5

6

Control Treatment 1 Treatment 2
Treatment Group

W
ei

gh
t (

g)

15



myplot +
scale_y_continuous(

name = "Weight (g)",
limits = c(0, NA),
breaks = seq(0, 6),
expand = expansion(mult = c(0, 0.05))

) +
scale_x_discrete(

name = "Treatment Group",
labels = c(
ctrl = "Control",
trt1 = "Treatment 1",
trt2 = "Treatment 2"

)
)

0

1

2

3

4

5

6

Control Treatment 1 Treatment 2
Treatment Group

W
ei

gh
t (

g)

In the left plot, we use the expand = c(0, 0) argument in scale_y_continuous() to simply
set the expansion to 0 on both sides of the scale. This removes all extra space around the data.
However, this also results in the plot being cut off right at the maximum observation, which
might not be desirable.

In the right plot, we use the expansion() function in the expand = argument. This function

16

https://ggplot2.tidyverse.org/reference/expansion.html


allows us to set different expansion multipliers for the lower and upper limits of the scale. Here,
we set the lower multiplier to 0 to remove the space below 0, and the upper multiplier to 0.05
to add a small amount (= 5%) of space above the maximum observation.

Tip

For a better understanding of how this expansion-thing works, I found this cheat sheet
to be insightful.

We update our myplot according to what we just learned. To get a better overview, we recreate
it from scratch:

myplot <- ggplot(data = PlantGrowth) +
aes(y = weight, x = group) +
geom_point() +
scale_y_continuous(

name = "Weight (g)",
limits = c(0, NA),
breaks = seq(0, 6),
expand = expansion(mult = c(0, 0.05))

) +
scale_x_discrete(

name = "Treatment Group",
labels = c(
ctrl = "Control",
trt1 = "Treatment 1",
trt2 = "Treatment 2"

)
)

5 Theme

In ggplot2, the theme() function is a powerful tool that allows you to customize the non-data
components of your plot. This includes the plot background, grid lines, axis lines, text, legend,
and more. By using theme(), you can create plots that not only represent your data accurately,
but also align with your personal or organizational style guidelines.

Let’s take a look at two examples where we use theme() to modify the plot background and
the axis lines.

17

https://twitter.com/ChBurkhart/status/1492087527511052290


myplot +
theme(plot.background = element_rect(fill = "green"))

0

1

2

3

4

5

6

Control Treatment 1 Treatment 2
Treatment Group

W
ei

gh
t (

g)

myplot +
theme(axis.line = element_line(color = "red", linewidth = 3))

18



0

1

2

3

4

5

6

Control Treatment 1 Treatment 2
Treatment Group

W
ei

gh
t (

g)

In the first example, we use theme(plot.background = element_rect(fill = "green"))
to change the plot background to green. In the second example, we use theme(axis.line
= element_line(color = "red", linewidth = 3)) to change the color of the axis lines to
red and increase their width. While these functions may seem a bit cryptic, the good news
is that there are only four different theme elements: element_blank() draws nothing, and
assigns no space, element_rect() for borders and backgrounds, element_line() for lines
and element_text() for text.

While the theme() function provides a high level of customization, it can be time-consuming to
manually specify every detail of your plot. To save time, ggplot2 provides several predefined
“complete themes” that you can use. These themes have been professionally designed and
provide a quick way to change the overall appearance of your plot.

The default theme in ggplot2 is theme_grey(). However, there are several other themes
available, such as theme_bw(), theme_classic(), theme_dark(), and more. Let’s take a look
at two of these themes that I personally like:

myplot +
theme_classic()

19

https://ggplot2.tidyverse.org/reference/element.html


0

1

2

3

4

5

6

Control Treatment 1 Treatment 2
Treatment Group

W
ei

gh
t (

g)

myplot +
theme_bw()

0

1

2

3

4

5

6

Control Treatment 1 Treatment 2
Treatment Group

W
ei

gh
t (

g)

20



Note that you can also first add a complete theme_*() and subsequently change individual
aspects of it with via theme().

Remember, while themes can greatly enhance the aesthetic appeal of your plots, the most
important aspect of any plot is its ability to accurately and effectively convey information
about your data. Always prioritize clarity and accuracy over aesthetic appeal when creating
your plots.

Additional Resources

• List of all complete themes
• Documenation of the theme() function

We update our myplot according to what we just learned. To get a better overview, we recreate
it from scratch:

myplot <- ggplot(data = PlantGrowth) +
aes(y = weight, x = group) +
geom_point() +
scale_y_continuous(

name = "Weight (g)",
limits = c(0, NA),
breaks = seq(0, 6),
expand = expansion(mult = c(0, 0.05))

) +
scale_x_discrete(

name = "Treatment Group",
labels = c(
ctrl = "Control",
trt1 = "Treatment 1",
trt2 = "Treatment 2"

)
) +
theme_classic()

6 Export

Once you have created a plot in ggplot2, you may want to export it as an image file. This can
be useful for including the plot in a report, a presentation, or a website.

In RStudio, you can manually export your plots by clicking on the ‘Export’ button in the
‘Plots’ pane. This will open a dialog box where you can choose the format and settings for

21

https://ggplot2.tidyverse.org/reference/ggtheme.html
https://ggplot2.tidyverse.org/reference/theme.html


your exported image.

However, a more flexible and reproducible way to export your plots is by using the ggsave()
function provided by ggplot2. This function allows you to specify the details of the exported
image directly in your code, ensuring that you can reproduce the exact same image in the
future. The ggsave() function has several arguments that allow you to specify the details of
the exported image:

ggsave(
filename = "myplot.png",
plot = myplot,
path = "C:/Users/YourName/Documents",
scale = 1,
width = 6,
height = 4,
units = "cm",
dpi = 300

)

• filename: This is the name of the file that you want to create. You should include the
file extension (e.g., .png, .jpg, .pdf) in the filename. The file extension determines the
format of the exported image.

• plot: This is the plot that you want to save. If you don’t specify a plot, ggsave() will
save the last plot that you created.

• path: This is the directory where you want to save the file. If you don’t specify a path,
ggsave() will save the file in your current working directory.

• scale: This is a scaling factor that is applied to the text and elements of the plot. A
scale of 1 means that the plot is saved at its original size. A scale of 2 means that the
plot is saved at twice its original size.

• width, height: These are the dimensions of the exported image. You can specify the
dimensions in any units that you like (e.g., inches, cm, mm).

• units: This is the units in which the width and height are specified. The default is “in”
for inches, but you can also use “cm” for centimeters, “mm” for millimeters, or “px” for
pixels.

• dpi: This is the resolution of the exported image in dots per inch. A higher dpi will
result in a higher-quality image, but the file size will also be larger. The default dpi is
300, which is suitable for most purposes.

22



In this example, we are saving myplot as a PNG file named “myplot.png” in the Documents
directory. The plot is saved at its original size (scale = 1) and the dimensions of the image
are 6 cm by 4 cm. The resolution of the image is 300 dpi.

Tip

If you want to open the image file you’ve just created directly on your com-
puter, you can use the system() function in R. For instance, system('open
"FILENAME"') will open the specified file. So, in our case, running system('open
"C:/Users/YourName/Documents/myplot.png"') will open the PNG file we’ve just cre-
ated, and it will do so outside of RStudio.
I find this approach preferable to viewing my ggplot in RStudio’s Plots-pane, because it
gives you a more accurate preview of how your plot will look in its final context. The
preview in RStudio actually doesn’t do this, because the scale and size of the plot adjusts
to the size you dragged the Plots-pane to.
Here is a gist of how I used to apply this approach, but nowadays I wrapped all of this
into my own function.

7 Color, Shape and More

In ggplot2, the aesthetics of your plot, such as color and shape, can be adjusted to enhance
the visual representation of your data. In this section, we will explore how to manipulate these
aesthetics using the geom_point() function.

First, let’s recreate our myplot object, but this time without the geom_point() layer. This
will provide us with a clean slate to experiment with:

myplot <- ggplot(data = PlantGrowth) +
aes(y = weight, x = group) +
scale_y_continuous(

name = "Weight (g)",
limits = c(0, NA),
breaks = seq(0, 6),
expand = expansion(mult = c(0, 0.05))

) +
scale_x_discrete(

name = "Treatment Group",
labels = c(
ctrl = "Control",
trt1 = "Treatment 1",
trt2 = "Treatment 2"

23

https://gist.github.com/SchmidtPaul/5cd96b53449f5f50cbda725d4cdacf9b
https://schmidtpaul.github.io/BioMathR/reference/gg_export.html


)
) +
theme_classic()

7.1 General Aesthetic Modifications

To show you what is possible with geom_point(), let’s create two new plots. In the first plot,
we will set the color of the points to orange. In the second plot, we will modify several aspects
of the points, including color, shape, size, and transparency.

myplot +
geom_point(color = "orange")

0

1

2

3

4

5

6

Control Treatment 1 Treatment 2
Treatment Group

W
ei

gh
t (

g)

myplot +
geom_point(

color = "purple",
shape = 18,
size = 5,
alpha = 0.5

)

24



0

1

2

3

4

5

6

Control Treatment 1 Treatment 2
Treatment Group

W
ei

gh
t (

g)

In the first plot, we use color = “orange” inside the geom_point() function. This sets the color
of all points to orange.

In the second plot, we modify several aspects of the points:

• color = “purple” sets the color of the points to purple. shape = 18 changes the shape of
the points. ggplot2 includes several different shapes that you can use. The number 18
corresponds to a filled diamond shape.

• size = 3 increases the size of the points. The size is measured in mm.
• alpha = 0.5 sets the transparency of the points. The alpha value ranges from 0 (com-

pletely transparent) to 1 (completely opaque).

These modifications allow us to customize the appearance of the points to suit our preferences
and the needs of our data.

7.2 Aesthetic Mapping with aes()

One of the most powerful features of ggplot2, however, is its ability to create dynamic visual
mappings through the aes() function. This function is used within ggplot to map data
variables to visual properties of the plot, such as color, size, shape, and more. Of course, you
are already aware that we have been using aes() to define the x and y axes throughout our
tutorial.

25



At its core, aes() stands for aesthetic mapping. It’s the tool we use to tell ggplot2 how to
use the data to modify the appearance of the geoms. For example, if we want to use different
colors to represent different groups within our data, aes() is how we make that happen.

Finally note that you can define aes() and data = in general or per individual geom_. Thus,
these two codes produce the same graph:

ggplot(data = PlantGrowth) +
aes(y = weight,

x = group,
color = group) +

geom_point()

3.5

4.0

4.5

5.0

5.5

6.0

ctrl trt1 trt2
group

w
ei

gh
t

group

ctrl

trt1

trt2

ggplot() +
geom_point(

data = PlantGrowth,
aes(y = weight,

x = group,
color = group)

)

26



3.5

4.0

4.5

5.0

5.5

6.0

ctrl trt1 trt2
group

w
ei

gh
t

group

ctrl

trt1

trt2

As a result, we can once more change color, shape, size, and transparency, but this time
dynamically. As an example color and shape are mapped so they depend on the group, while
size and transparency depend on the weight:

myplot +
geom_point(aes(

color = group,
shape = group,
size = weight,
alpha = weight

))

27



0

1

2

3

4

5

6

Control Treatment 1 Treatment 2
Treatment Group

W
ei

gh
t (

g)

weight

4.0

4.5

5.0

5.5

6.0

group

ctrl

trt1

trt2

Just like we used scale_x_* and scale_y_* to control the appearance of aes(x = ..., y
= ...), there are also scale functions for each aesthetic allowing us to have complete control
over the appearance of our plots:

myplot +
geom_point(aes(

color = group,
shape = group,
size = weight,
alpha = weight

)) +
scale_color_manual(

values = c("orange", "gold", "#00923f")
) +
scale_shape_manual(

values = c(15, 18, 19)
) +
scale_size_continuous(

range = c(1, 10)
) +
scale_alpha_continuous(

range = c(0.1, 0.4)

28



)

0

1

2

3

4

5

6

Control Treatment 1 Treatment 2
Treatment Group

W
ei

gh
t (

g)
weight

4.0

4.5

5.0

5.5

6.0

group

ctrl

trt1

trt2

7.3 More on color

I believe color is such an essential aesthetic element in data visualization that it warrants a
more detailed exploration.

You don’t actually have to manually choose colors for scale_color_manual() from long lists
of possible colors like this one. Instead, you can utilize functions from various packages that
generate the necessary number of colors from predefined palettes via packages like {RColor-
Brewer} or {METBrewer}.

color_vector <- RColorBrewer::brewer.pal(3, "Dark2")

myplot +
geom_point(aes(color = group), size = 5) +
scale_color_manual(values = color_vector)

29

http://sape.inf.usi.ch/sites/default/files/ggplot2-colour-names.png
https://earlglynn.github.io/RNotes/package/RColorBrewer/index.html
https://earlglynn.github.io/RNotes/package/RColorBrewer/index.html
https://github.com/BlakeRMills/MetBrewer#all-palettes


0

1

2

3

4

5

6

Control Treatment 1 Treatment 2
Treatment Group

W
ei

gh
t (

g)

group

ctrl

trt1

trt2

color_vector <- MetBrewer::met.brewer("VanGogh2", 3)

myplot +
geom_point(aes(color = group), size = 5) +
scale_color_manual(values = color_vector)

30



0

1

2

3

4

5

6

Control Treatment 1 Treatment 2
Treatment Group

W
ei

gh
t (

g)

group

ctrl

trt1

trt2

But in some cases, you don’t even have to first generate a vector and then pass it to
scale_color_manual(). Instead, you can directly use the respective scale_color_*
function, which automatically selects and applies colors from a palette.

myplot +
geom_point(aes(color = group), size = 5) +
scale_color_brewer(palette = "Pastel1")

31



0

1

2

3

4

5

6

Control Treatment 1 Treatment 2
Treatment Group

W
ei

gh
t (

g)

group

ctrl

trt1

trt2

myplot +
geom_point(aes(color = group), size = 5) +
scale_color_viridis_d()

32



0

1

2

3

4

5

6

Control Treatment 1 Treatment 2
Treatment Group

W
ei

gh
t (

g)

group

ctrl

trt1

trt2

Note that there are actually color palettes that are color-blind friendly like viridis, which
was used above via scale_color_viridis_d().

Finally, you sometimes must not or don’t need to choose the colors at all, because there is a
corporate design you can stick to. Maybe you even just try to match other colors appearing
in the document/journal that the graphic will end up in. As an example, this is a screenshot
of the Corporate Design of the German Federal Environment Agency

33

https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html#comparison
https://www.umweltbundesamt.de/dokument/corporate-design-des-umweltbundesamtes


8 End

TODO
Heiss, Andrew. 2023. “Data Visualization with R - Data Visualization.” https://datavizs23.

classes.andrewheiss.com/.
Scherer, Cédric. 2022a. “A Ggplot2 Tutorial for Beautiful Plotting in r.” Cédric Scherer Blog.

https://www.cedricscherer.com/2019/08/05/a-ggplot2-tutorial-for-beautiful-plotting-in-
r/.

———. 2022b. “Graphic Design with Ggplot2 - Graphic Design with Ggplot2.” Rstu-
dio::conf(2022) Workshop. https://rstudio-conf-2022.github.io/ggplot2-graphic-design/.

Wickham, Hadley, and Garrett Grolemund. 2017. R for Data Science: Import, Tidy, Trans-
form, Visualize, and Model Data. 1st ed. O’Reilly Media, Inc. https://r4ds.had.co.nz/.

Wilke, Claus O. 2019. Fundamentals of data visualization. O’Reilly Media. https://clauswilke.
com/dataviz/.

34

https://datavizs23.classes.andrewheiss.com/
https://datavizs23.classes.andrewheiss.com/
https://www.cedricscherer.com/2019/08/05/a-ggplot2-tutorial-for-beautiful-plotting-in-r/
https://www.cedricscherer.com/2019/08/05/a-ggplot2-tutorial-for-beautiful-plotting-in-r/
https://rstudio-conf-2022.github.io/ggplot2-graphic-design/
https://r4ds.had.co.nz/
https://clauswilke.com/dataviz/
https://clauswilke.com/dataviz/

	Before we start
	Who this is for
	Other resources
	Packages to install & load
	Showcase

	Let's start
	Saving and reusing plots
	Axes
	Name
	Limits
	Breaks
	Labels
	Expand

	Theme
	Export
	Color, Shape and More
	General Aesthetic Modifications
	Aesthetic Mapping with aes()
	More on color

	End

