
The tidyverse
Paul Schmidt

2023-11-16

Pipe (%>%), Tibbles, dplyr-verbs, long/wide format and more.

Table of contents

1 Tables 2
1.1 data.frame . 2
1.2 tibble . 4

2 Plots 7

3 The pipe operator 8
3.1 No pipe - intermediate steps . 8
3.2 No pipe - nesting functions . 9
3.3 Pipe! . 9

4 dplyr verbs 10
4.1 mutate() . 10
4.2 select() . 14
4.3 filter() . 16
4.4 arrange() . 20
4.5 summarise() . 22

5 long/wide format 25

6 forcats 29

7 stringr 32

When using R, you will sooner or later hear about the {tidyverse}. The tidyverse is a collection
of R packages that “share an underlying design philosophy, grammar, and data structures”

1

https://www.wikiwand.com/en/Tidyverse

of tidy data. The individual tidyverse packages comprise some of the most downloaded R
packages.

Install the complete tidyverse with:

install.packages("tidyverse")
or
pacman::p_load("tidyverse")

Table 1: Some of my favorite tidyverse packages

ggplot2 dplyr tibble forcats stringr

I did not use the tidyverse packages in my first years using R, but I wish I did. While you can
often reach your goal with or without using the tidyverse packages, I personally prefer using
them. Thus, they are used extensively throughout the chapters of this website.

During the next sections I will try to explain how to use some of these packages and sometimes
compare them to the Base R (= non-tidyverse) alternative.

Additional Resources

• “R for Data Science” (Wickham and Grolemund 2017), which is a book that can
be read online for free and was written by the package authors themselves.

1 Tables

Finally, we can now talk about data tables with rows and columns. In R, I like to think of a
table as multiple vectors side by side, so that each column is a vector.

1.1 data.frame

Base R has a standard format for data tables called data.frame. Here is an example table
that is an R built-in, just like pi is - it is called PlantGrowth:

PlantGrowth

2

https://r4ds.had.co.nz/

weight group
1 4.17 ctrl
2 5.58 ctrl
3 5.18 ctrl
4 6.11 ctrl
5 4.50 ctrl
6 4.61 ctrl
7 5.17 ctrl
8 4.53 ctrl
9 5.33 ctrl
10 5.14 ctrl
11 4.81 trt1
12 4.17 trt1
13 4.41 trt1
14 3.59 trt1
15 5.87 trt1
16 3.83 trt1
17 6.03 trt1
18 4.89 trt1
19 4.32 trt1
20 4.69 trt1
21 6.31 trt2
22 5.12 trt2
23 5.54 trt2
24 5.50 trt2
25 5.37 trt2
26 5.29 trt2
27 4.92 trt2
28 6.15 trt2
29 5.80 trt2
30 5.26 trt2

Let us create a copy of this table called df (dataframe) and then use some helpful functions
to get a first impression of this data:

df <- PlantGrowth
str(df)

'data.frame': 30 obs. of 2 variables:
$ weight: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 5.33 5.14 ...
$ group : Factor w/ 3 levels "ctrl","trt1",..: 1 1 1 1 1 1 1 1 1 1 ...

3

summary(df)

weight group
Min. :3.590 ctrl:10
1st Qu.:4.550 trt1:10
Median :5.155 trt2:10
Mean :5.073
3rd Qu.:5.530
Max. :6.310

We can see that this dataset has 30 observations (=rows) and 2 variables (=columns) and is of
the type “data.frame”. Furthermore, the first variable is called weight and contains numeric
values for which we get some measures of central tendency like the minimum, maximum, mean
and median. The second variable is called group and is of the type factor containing a total
of three different levels, which each appear 10 times.

If you want to extract/use values of only one column of such a data.frame, you write the name
of the data.frame, then a $ and finally the name of the respective column. It returns the values
of that column as a vector:

df$weight

[1] 4.17 5.58 5.18 6.11 4.50 4.61 5.17 4.53 5.33 5.14 4.81 4.17 4.41 3.59 5.87
[16] 3.83 6.03 4.89 4.32 4.69 6.31 5.12 5.54 5.50 5.37 5.29 4.92 6.15 5.80 5.26

df$group

[1] ctrl ctrl ctrl ctrl ctrl ctrl ctrl ctrl ctrl ctrl trt1 trt1 trt1 trt1 trt1
[16] trt1 trt1 trt1 trt1 trt1 trt2 trt2 trt2 trt2 trt2 trt2 trt2 trt2 trt2 trt2
Levels: ctrl trt1 trt2

1.2 tibble

One major aspect of the tidyverse is formatting tables as tibble instead of data.frame. A
tibble “is a modern reimagining of the data.frame, keeping what time has proven to be effective,
and throwing out what is not.” It is super simple to convert a data.frame into a tibble, but
you must have the tidyverse R package {tibble} installed and loaded - which it is if you are
loading the entire {tidyverse}. Let us convert our df into a tibble and call it tbl:

4

pacman::p_load(tidyverse)
tbl <- as_tibble(df)
tbl

A tibble: 30 x 2
weight group
<dbl> <fct>

1 4.17 ctrl
2 5.58 ctrl
3 5.18 ctrl
4 6.11 ctrl
5 4.5 ctrl
6 4.61 ctrl
7 5.17 ctrl
8 4.53 ctrl
9 5.33 ctrl

10 5.14 ctrl
i 20 more rows

Of course, the data itself does not change - only its format and the way it is displayed to us
in R. If you compare the output we get from printing tbl here to that of printing df above, I
would like to point out some things I find extremely convenient for tibbles:

1. There is an extra first line telling us about the number of rows and columns.
2. There is an extra line below the column names telling us about the data type of each

column.
3. Only the first ten rows of data are printed and a “… with 20 more rows” is added below.
4. It can’t be seen here, but this would analogously happen if there were too many columns.
5. It can’t be seen here, but missing values NA and negative numbers are printed in red.

Finally, note that in its heart, a tibble is still a data.frame and in most cases you can do
everything with a tibble that you can do with a data.frame:

class(tbl)

[1] "tbl_df" "tbl" "data.frame"

str(tbl)

5

tibble [30 x 2] (S3: tbl_df/tbl/data.frame)
$ weight: num [1:30] 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 5.33 5.14 ...
$ group : Factor w/ 3 levels "ctrl","trt1",..: 1 1 1 1 1 1 1 1 1 1 ...

summary(tbl)

weight group
Min. :3.590 ctrl:10
1st Qu.:4.550 trt1:10
Median :5.155 trt2:10
Mean :5.073
3rd Qu.:5.530
Max. :6.310

tbl$weight

[1] 4.17 5.58 5.18 6.11 4.50 4.61 5.17 4.53 5.33 5.14 4.81 4.17 4.41 3.59 5.87
[16] 3.83 6.03 4.89 4.32 4.69 6.31 5.12 5.54 5.50 5.37 5.29 4.92 6.15 5.80 5.26

tbl$group

[1] ctrl ctrl ctrl ctrl ctrl ctrl ctrl ctrl ctrl ctrl trt1 trt1 trt1 trt1 trt1
[16] trt1 trt1 trt1 trt1 trt1 trt2 trt2 trt2 trt2 trt2 trt2 trt2 trt2 trt2 trt2
Levels: ctrl trt1 trt2

class(df)

[1] "data.frame"

str(df)

'data.frame': 30 obs. of 2 variables:
$ weight: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 5.33 5.14 ...
$ group : Factor w/ 3 levels "ctrl","trt1",..: 1 1 1 1 1 1 1 1 1 1 ...

summary(df)

6

weight group
Min. :3.590 ctrl:10
1st Qu.:4.550 trt1:10
Median :5.155 trt2:10
Mean :5.073
3rd Qu.:5.530
Max. :6.310

df$weight

[1] 4.17 5.58 5.18 6.11 4.50 4.61 5.17 4.53 5.33 5.14 4.81 4.17 4.41 3.59 5.87
[16] 3.83 6.03 4.89 4.32 4.69 6.31 5.12 5.54 5.50 5.37 5.29 4.92 6.15 5.80 5.26

df$group

[1] ctrl ctrl ctrl ctrl ctrl ctrl ctrl ctrl ctrl ctrl trt1 trt1 trt1 trt1 trt1
[16] trt1 trt1 trt1 trt1 trt1 trt2 trt2 trt2 trt2 trt2 trt2 trt2 trt2 trt2 trt2
Levels: ctrl trt1 trt2

Therefore, I almost always format my datasets as tibbles.

2 Plots

Base R has a plot() function which is good at getting some first data visualizations with
very little code. It guesses what type of plot you would like to see via the data type of the
respective data to be plotted:

plot(df$weight) # scatter plot of values in the order they appear
plot(df$group) # bar plot of frequency of each level
plot(x = df$group, y = df$weight) # boxplot for values of each level

However, I really just use plot() to get a quick first glance at data. In order to get profes-
sional visualizations I always use the tidyverse package {ggplot2} and its function ggplot().
It seems like it can create any plot you can imagine and there are multiple examples with
increasing complexity spread out through this website’s chapters.

7

0 5 10 15 20 25 30

3.
5

4.
5

5.
5

Index

df
$w

ei
gh

t

ctrl trt1 trt2

0
2

4
6

8
10

ctrl trt1 trt2

3.
5

4.
5

5.
5

x

y

Additional Resources

• Cédric Scherer’s (2022) A ggplot2 tutorial for beautiful plotting in R
• ggplot2 extensions gallery

3 The pipe operator

The pipe operator “completely changed the way how we code in R, making it more simple and
readable” (Álvarez 2021). I started using the pipe as %>% from the {dplyr} package1. However,
since May 18, 2021 (= R 4.1.0) the pipe is officially part of Base R - although written as |>2.

To understand what makes it so great we need to start using more than one function at a
time. So far, we have only used functions individually. Yet, in real life you will often find
yourself having to combine multiple functions. As a fictional example, let’s say that from the
PlantGrowth data, we want to extract a sorted vector of the square root of all weight-values
that belong to the ctrl group. I will show three approaches how to accomplish this

3.1 No pipe - intermediate steps

Using one function at a time and saving the output in the variables a - d, we can do this:

a <- filter(PlantGrowth, group == "ctrl")
b <- pull(a, weight) # same as: b <- a$weight
c <- sqrt(b)
d <- round(c, digits = 1)
sort(d)

1But it was not the first package to use it. This blog post has a nice summary of the history of the pipe
operator in R.

2Note that there are some differences between %>% and |> - find more about it e.g. here, here or here.

8

https://www.cedricscherer.com/2019/08/05/a-ggplot2-tutorial-for-beautiful-plotting-in-r/
https://exts.ggplot2.tidyverse.org/gallery/
http://adolfoalvarez.cl/blog/2021-09-16-plumbers-chains-and-famous-painters-the-history-of-the-pipe-operator-in-r/
https://twitter.com/TimTeaFan/status/1582118234220007424
http://adolfoalvarez.cl/blog/2021-09-16-plumbers-chains-and-famous-painters-the-history-of-the-pipe-operator-in-r/#base-r
https://stackoverflow.com/questions/67633022/what-are-the-differences-between-rs-new-native-pipe-and-the-magrittr-pipe

[1] 2.0 2.1 2.1 2.1 2.3 2.3 2.3 2.3 2.4 2.5

3.2 No pipe - nesting functions

Just like in MS Excel, it is possible to write functions inside of functions so that we can do
this:

sort(round(sqrt(pull(filter(PlantGrowth, group == "ctrl"), weight)), digits = 1))

[1] 2.0 2.1 2.1 2.1 2.3 2.3 2.3 2.3 2.4 2.5

3.3 Pipe!

This approach (i) allows you to write functions from left to right / top to bottom and thus in
the order they are executed and the way you think about them and (ii) does not create extra
variables for intermediate steps:

PlantGrowth %>%
filter(group == "ctrl") %>%
pull(weight) %>%
sqrt() %>%
round(digits = 1) %>%
sort()

[1] 2.0 2.1 2.1 2.1 2.3 2.3 2.3 2.3 2.4 2.5

You can think about it like this: Something (in this case the PlantGrowth data.frame) goes
into the pipe and is directed to the next function filter(). By default, this function takes
what came out of the previous pipe and puts it as its first argument. This happens with every
pipe. You’ll notice that all the functions who required two arguments above, now only need
one argument, i.e. the additional argument, because the main argument stating which data is
to be used is by default simply what came out of the previous pipe. Accordingly, the functions
sqrt() and sort() appear empty here, because they only need one piece of information and
that is which data they should work with. Finally note that you can easily highlight only some
of the lines up until one of the pipes to see the intermediate results.

9

Note

The keyboard shortcut for writing %>% in RStudio is CTRL+SHIFT+M. Keyboard
shortcuts can be customized in RStudio as described here.

4 dplyr verbs

Taken directly from the documentation:

{dplyr} is a grammar of data manipulation, providing a consistent set of verbs that
help you solve the most common data manipulation challenges:

• mutate() adds new variables that are functions of existing variables.

• select() picks variables based on their names.

• filter() picks cases based on their values.

• summarise() reduces multiple values down to a single summary.

• arrange() changes the ordering of the rows.

These all combine naturally with group_by() which allows you to perform any
operation “by group”. If you are new to dplyr, the best place to start is the data
transformation chapter in R for data science (Wickham and Grolemund 2017).

In my experience you really can do most of the data manipulation before and after the actual
statistics with these functions. In other words, it is exactly these functions who can and should
replace the manual work you may currently even be doing in MS Excel. In the following sections
I will give very brief examples of how to use these functions while always pointing to more
thorough resources.

4.1 mutate()

This function is useful whenever you want to change existing columns or add new columns to
your table. To keep the following examples short and simple, let’s create tbl2 as only the first
six rows of tbl via the head() function:

tbl2 <- head(tbl)
tbl2

10

https://support.rstudio.com/hc/en-us/articles/206382178-Customizing-Keyboard-Shortcuts-in-the-RStudio-IDE
https://dplyr.tidyverse.org/
https://r4ds.had.co.nz/transform.html
https://r4ds.had.co.nz/transform.html

A tibble: 6 x 2
weight group
<dbl> <fct>

1 4.17 ctrl
2 5.58 ctrl
3 5.18 ctrl
4 6.11 ctrl
5 4.5 ctrl
6 4.61 ctrl

Let’s start by adding 2 to the weight in our data. Below, we do this two different ways: by
adding a column named new to the dataset (left) and by replacing/overwriting the original
weight column (right):

tbl2 %>%
mutate(new = weight + 2)

A tibble: 6 x 3
weight group new
<dbl> <fct> <dbl>

1 4.17 ctrl 6.17
2 5.58 ctrl 7.58
3 5.18 ctrl 7.18
4 6.11 ctrl 8.11
5 4.5 ctrl 6.5
6 4.61 ctrl 6.61

tbl2 %>%
mutate(weight = weight + 2)

A tibble: 6 x 2
weight group
<dbl> <fct>

1 6.17 ctrl
2 7.58 ctrl
3 7.18 ctrl
4 8.11 ctrl
5 6.5 ctrl
6 6.61 ctrl

We can also create multiple columns at once (left) and make the values of the new column

11

dynamically depend on the other columns via case_when() (right):

tbl2 %>%
mutate(

`Name with Space` = "Hello!",
number10 = 10

)

A tibble: 6 x 4
weight group `Name with Space` number10
<dbl> <fct> <chr> <dbl>

1 4.17 ctrl Hello! 10
2 5.58 ctrl Hello! 10
3 5.18 ctrl Hello! 10
4 6.11 ctrl Hello! 10
5 4.5 ctrl Hello! 10
6 4.61 ctrl Hello! 10

tbl2 %>%
mutate(size = case_when(

weight > 5.5 ~ "large",
weight < 4.5 ~ "small",
TRUE ~ "normal" # everything else

))

A tibble: 6 x 3
weight group size
<dbl> <fct> <chr>

1 4.17 ctrl small
2 5.58 ctrl large
3 5.18 ctrl normal
4 6.11 ctrl large
5 4.5 ctrl normal
6 4.61 ctrl normal

Finally, we can efficiently apply the same function to multiple columns at once via across().
We can select the columns e.g. manually via their names in a vector (left) or via a function
such as is.numeric (right):

tbl2 %>%
mutate(v1 = 1, v2 = 2, v3 = 3) %>%

12

mutate(
across(c(v1, v2), ~ .x + 20)
)

A tibble: 6 x 5
weight group v1 v2 v3
<dbl> <fct> <dbl> <dbl> <dbl>

1 4.17 ctrl 21 22 3
2 5.58 ctrl 21 22 3
3 5.18 ctrl 21 22 3
4 6.11 ctrl 21 22 3
5 4.5 ctrl 21 22 3
6 4.61 ctrl 21 22 3

tbl2 %>%
mutate(v1 = 1, v2 = 2, v3 = 3) %>%
mutate(

across(where(is.numeric), ~ .x + 20)
)

A tibble: 6 x 5
weight group v1 v2 v3
<dbl> <fct> <dbl> <dbl> <dbl>

1 24.2 ctrl 21 22 23
2 25.6 ctrl 21 22 23
3 25.2 ctrl 21 22 23
4 26.1 ctrl 21 22 23
5 24.5 ctrl 21 22 23
6 24.6 ctrl 21 22 23

Additional Resources

• 5.5 Add new variables with mutate() in R for data science (Wickham and Grole-
mund 2017)

• Create, modify, and delete columns with mutate()
• A general vectorised if with case_when()
• Apply a function (or functions) across multiple columns with across()

13

https://r4ds.had.co.nz/transform.html#add-new-variables-with-mutate
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/case_when.html
https://dplyr.tidyverse.org/reference/across.html

4.2 select()

This function is useful whenever you want to select a subset of columns or change the order of
columns. To provide better examples, let’s first create a table tbl3 with a few more columns:

tbl3 <- tbl2 %>%
mutate(var1 = 1, var2 = 2, var3 = "text", var4 = "word")

tbl3

A tibble: 6 x 6
weight group var1 var2 var3 var4
<dbl> <fct> <dbl> <dbl> <chr> <chr>

1 4.17 ctrl 1 2 text word
2 5.58 ctrl 1 2 text word
3 5.18 ctrl 1 2 text word
4 6.11 ctrl 1 2 text word
5 4.5 ctrl 1 2 text word
6 4.61 ctrl 1 2 text word

We can now select individual columns manually by giving all names (left) and even select all
columns from:to by writing a colon between them (right):

tbl3 %>%
select(group, var1, var4)

A tibble: 6 x 3
group var1 var4
<fct> <dbl> <chr>

1 ctrl 1 word
2 ctrl 1 word
3 ctrl 1 word
4 ctrl 1 word
5 ctrl 1 word
6 ctrl 1 word

tbl3 %>%
select(group, var1:var4)

14

A tibble: 6 x 5
group var1 var2 var3 var4
<fct> <dbl> <dbl> <chr> <chr>

1 ctrl 1 2 text word
2 ctrl 1 2 text word
3 ctrl 1 2 text word
4 ctrl 1 2 text word
5 ctrl 1 2 text word
6 ctrl 1 2 text word

We can also delete specific columns by putting a - in fornt of their name or use functions
like starts_with(), ends_with(), contains(), matches() and num_range() to select all
columns based on (parts of) their name:

tbl3 %>%
select(-group)

A tibble: 6 x 5
weight var1 var2 var3 var4
<dbl> <dbl> <dbl> <chr> <chr>

1 4.17 1 2 text word
2 5.58 1 2 text word
3 5.18 1 2 text word
4 6.11 1 2 text word
5 4.5 1 2 text word
6 4.61 1 2 text word

tbl3 %>%
select(contains("r"))

A tibble: 6 x 5
group var1 var2 var3 var4
<fct> <dbl> <dbl> <chr> <chr>

1 ctrl 1 2 text word
2 ctrl 1 2 text word
3 ctrl 1 2 text word
4 ctrl 1 2 text word
5 ctrl 1 2 text word
6 ctrl 1 2 text word

Finally, we can select based on a function like is.numeric via where() (left) or simply rear-

15

range while keeping all columns by using everything() (right)

tbl3 %>%
select(where(is.numeric))

A tibble: 6 x 3
weight var1 var2
<dbl> <dbl> <dbl>

1 4.17 1 2
2 5.58 1 2
3 5.18 1 2
4 6.11 1 2
5 4.5 1 2
6 4.61 1 2

tbl3 %>%
select(var1, everything())

A tibble: 6 x 6
var1 weight group var2 var3 var4

<dbl> <dbl> <fct> <dbl> <chr> <chr>
1 1 4.17 ctrl 2 text word
2 1 5.58 ctrl 2 text word
3 1 5.18 ctrl 2 text word
4 1 6.11 ctrl 2 text word
5 1 4.5 ctrl 2 text word
6 1 4.61 ctrl 2 text word

Additional Resources

• 5.4 Select columns with select() in R for data science (Wickham and Grolemund
2017)

• Subset columns using their names and types with select()
• Select variables that match a pattern with starts_with() etc.
• Select variables with a function with where()

4.3 filter()

This function is useful whenever you want to subset rows based on their values. Note that for
the examples here, we use the original tbl with 30 observations.

16

https://r4ds.had.co.nz/transform.html#select
https://dplyr.tidyverse.org/reference/select.html
https://tidyselect.r-lib.org/reference/starts_with.html
https://tidyselect.r-lib.org/reference/where.html

Let’s immediately filter for two conditions: Observations that belong to group trt2 and (&)
are larger than 6 (left); Observations that are larger than 6 or (|) smaller than 4 (right):

tbl %>%
filter(weight > 6 & group == "trt2")

A tibble: 2 x 2
weight group
<dbl> <fct>

1 6.31 trt2
2 6.15 trt2

tbl %>%
filter(weight > 6 | weight < 4)

A tibble: 6 x 2
weight group
<dbl> <fct>

1 6.11 ctrl
2 3.59 trt1
3 3.83 trt1
4 6.03 trt1
5 6.31 trt2
6 6.15 trt2

Instead of writing a lot of conditions separated by |, it is often more efficient to use %in%:

tbl %>%
filter(group == "trt1" | group == "trt2")

A tibble: 20 x 2
weight group
<dbl> <fct>

1 4.81 trt1
2 4.17 trt1
3 4.41 trt1
4 3.59 trt1
5 5.87 trt1
6 3.83 trt1
7 6.03 trt1

17

8 4.89 trt1
9 4.32 trt1

10 4.69 trt1
11 6.31 trt2
12 5.12 trt2
13 5.54 trt2
14 5.5 trt2
15 5.37 trt2
16 5.29 trt2
17 4.92 trt2
18 6.15 trt2
19 5.8 trt2
20 5.26 trt2

tbl %>%
filter(group %in% c("trt1", "trt2"))

A tibble: 20 x 2
weight group
<dbl> <fct>

1 4.81 trt1
2 4.17 trt1
3 4.41 trt1
4 3.59 trt1
5 5.87 trt1
6 3.83 trt1
7 6.03 trt1
8 4.89 trt1
9 4.32 trt1

10 4.69 trt1
11 6.31 trt2
12 5.12 trt2
13 5.54 trt2
14 5.5 trt2
15 5.37 trt2
16 5.29 trt2
17 4.92 trt2
18 6.15 trt2
19 5.8 trt2
20 5.26 trt2

We can also filter for values that are not of the ctrl group (left) or that are larger than the

18

mean weight (right):

tbl %>%
filter(group != "ctrl")

A tibble: 20 x 2
weight group
<dbl> <fct>

1 4.81 trt1
2 4.17 trt1
3 4.41 trt1
4 3.59 trt1
5 5.87 trt1
6 3.83 trt1
7 6.03 trt1
8 4.89 trt1
9 4.32 trt1

10 4.69 trt1
11 6.31 trt2
12 5.12 trt2
13 5.54 trt2
14 5.5 trt2
15 5.37 trt2
16 5.29 trt2
17 4.92 trt2
18 6.15 trt2
19 5.8 trt2
20 5.26 trt2

tbl %>%
filter(weight > mean(weight))

A tibble: 17 x 2
weight group
<dbl> <fct>

1 5.58 ctrl
2 5.18 ctrl
3 6.11 ctrl
4 5.17 ctrl
5 5.33 ctrl
6 5.14 ctrl

19

7 5.87 trt1
8 6.03 trt1
9 6.31 trt2

10 5.12 trt2
11 5.54 trt2
12 5.5 trt2
13 5.37 trt2
14 5.29 trt2
15 6.15 trt2
16 5.8 trt2
17 5.26 trt2

Additional Resources

• 5.2 Filter rows with filter() in R for data science (Wickham and Grolemund 2017)
• Subset rows using column values with filter()

4.4 arrange()

This function is useful whenever you want to sort rows based on their values. We’ll once more
create a new version of our original dataset to best show what this function can do:

tbl4 <- tbl %>%
slice(1:3, 11:13, 21:23)

this keeps only rows 1,2,3,11,12,13,21,22,23

We can arrange rows via writing the column name (or column index/number). Note that by
default values are sorted in ascending order and strings are sorted alphabetically, but this can
be reversed by using desc():

tbl4 %>%
arrange(weight)

A tibble: 9 x 2
weight group
<dbl> <fct>

1 4.17 ctrl
2 4.17 trt1
3 4.41 trt1
4 4.81 trt1

20

https://r4ds.had.co.nz/transform.html#filter-rows-with-filter
https://dplyr.tidyverse.org/reference/filter.html

5 5.12 trt2
6 5.18 ctrl
7 5.54 trt2
8 5.58 ctrl
9 6.31 trt2

tbl4 %>%
arrange(desc(weight))

A tibble: 9 x 2
weight group
<dbl> <fct>

1 6.31 trt2
2 5.58 ctrl
3 5.54 trt2
4 5.18 ctrl
5 5.12 trt2
6 4.81 trt1
7 4.41 trt1
8 4.17 ctrl
9 4.17 trt1

You can also sort via multiple columns and you can provide a custom sorting order in a
vector:

tbl4 %>%
arrange(group, weight)

A tibble: 9 x 2
weight group
<dbl> <fct>

1 4.17 ctrl
2 5.18 ctrl
3 5.58 ctrl
4 4.17 trt1
5 4.41 trt1
6 4.81 trt1
7 5.12 trt2
8 5.54 trt2
9 6.31 trt2

21

myorder <- c("trt1", "ctrl", "trt2")

tbl4 %>%
arrange(

match(group, myorder),
weight

)

A tibble: 9 x 2
weight group
<dbl> <fct>

1 4.17 trt1
2 4.41 trt1
3 4.81 trt1
4 4.17 ctrl
5 5.18 ctrl
6 5.58 ctrl
7 5.12 trt2
8 5.54 trt2
9 6.31 trt2

Note that NA (= missing values) are always sorted to the end3, even when using desc().

Additional Resources

• 5.3 Arrange rows with arrange() in R for data science (Wickham and Grolemund
2017)

• Arrange rows by column values with arrange()
• How to have NA’s displayed first using arrange()

4.5 summarise()

This function can be useful whenever you want to summarise data. Yet, it is not very useful
(left) unless it is paired with group_by() (right).

tbl %>%
no group_by
summarise(my_mean = mean(weight))

3See the additional resources below if you want it differently.

22

https://r4ds.had.co.nz/transform.html#arrange-rows-with-arrange
https://dplyr.tidyverse.org/reference/arrange.html
https://stackoverflow.com/a/25267681/8830099

A tibble: 1 x 1
my_mean

<dbl>
1 5.07

tbl %>%
group_by(group) %>%
summarise(my_mean = mean(weight))

A tibble: 3 x 2
group my_mean
<fct> <dbl>

1 ctrl 5.03
2 trt1 4.66
3 trt2 5.53

You can create multiple summary output columns (left) and have multiple grouping columns
(right):

tbl %>%
group_by(group) %>%
summarise(

Mean = mean(weight),
StdDev = sd(weight),
Min = min(weight),
Median = median(weight),
Max = max(weight),
n_Obs = n(),

)

A tibble: 3 x 7
group Mean StdDev Min Median Max n_Obs
<fct> <dbl> <dbl> <dbl> <dbl> <dbl> <int>

1 ctrl 5.03 0.583 4.17 5.15 6.11 10
2 trt1 4.66 0.794 3.59 4.55 6.03 10
3 trt2 5.53 0.443 4.92 5.44 6.31 10

tbl %>%
mutate(larger5 = case_when(

weight > 5 ~ "yes",

23

weight < 5 ~ "no"
)) %>%
group_by(group, larger5) %>%
summarise(

n_Obs = n(),
Mean = mean(weight)

)

A tibble: 6 x 4
Groups: group [3]

group larger5 n_Obs Mean
<fct> <chr> <int> <dbl>

1 ctrl no 4 4.45
2 ctrl yes 6 5.42
3 trt1 no 8 4.34
4 trt1 yes 2 5.95
5 trt2 no 1 4.92
6 trt2 yes 9 5.59

Just like with mutate(), we can make use of across() to deal with multiple columns:

tbl %>%
mutate(v1 = 1, v2 = 2, v3 = 3) %>%
group_by(group) %>%
summarise(across(

where(is.numeric),
~ mean(.x)
))

A tibble: 3 x 5
group weight v1 v2 v3
<fct> <dbl> <dbl> <dbl> <dbl>

1 ctrl 5.03 1 2 3
2 trt1 4.66 1 2 3
3 trt2 5.53 1 2 3

tbl %>%
mutate(v1 = 1, v2 = 2, v3 = 3) %>%
group_by(group) %>%
summarise(across(

24

c(weight, v3),
list(
Min = ~ min(.x),
Max = ~ max(.x)
)

))

A tibble: 3 x 5
group weight_Min weight_Max v3_Min v3_Max
<fct> <dbl> <dbl> <dbl> <dbl>

1 ctrl 4.17 6.11 3 3
2 trt1 3.59 6.03 3 3
3 trt2 4.92 6.31 3 3

Important

Once you used group_by() on a table, it stays grouped unless you use ungroup() on it
afterwards. This was not relevant in the examples above, but you must be aware of this
if you are using the grouped (summary) results for further steps, since this can lead to
unexpected results. You can find an example and further resources on such unintended
outcomes here.

Additional Resources

• 5.6 Grouped summaries with summarise() in R for data science (Wickham and
Grolemund 2017)

• Summarise each group to fewer rows with summarise()
• Group by one or more variables with group_by()

5 long/wide format

Sometimes, data is referred to as being in long format or wide format. As the name suggests,
long formatted tables have more rows, but fewer columns than wide formatted tables, while
containing the same information. I find the easiest way to understand the two is by looking
at examples like in the following image, which was taken from statology.org:

Converting one format into the other is called pivoting in the tidyverse and the relevant
functions pivot_longer() and pivot_wider() are provided in {tidyr}.

25

https://twitter.com/SchmidtPaul1989/status/1586284894556418049
https://r4ds.had.co.nz/transform.html#grouped-summaries-with-summarise
https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/group_by.html
https://www.statology.org/long-vs-wide-data/
https://tidyr.tidyverse.org/reference/index.html

Note

You may have used other functions in this context. Here are some alternatives that are
superseded:

• melt() & dcast() of {data.table}
• fold() & unfold() of {databases}
• melt() & cast() of {reshape}
• melt() & dcast() of {reshape2}
• unpivot() & pivot() of {spreadsheets}
• gather() & spread() of {tidyr} < v1.0.0

The PlantGrowth data from above is actually already in long format, yet I create a version of
it that is shorter (only 3 instead of 10 observations per group) and has an additional column
called nr with is a running number per observation in each group:

long_dat <- PlantGrowth %>%
group_by(group) %>% # for each level in the "group" column
slice(1:3) %>% # keep only the rows 1-3
mutate(nr = 1:n(), # add a "nr" column with numbers 1 - ...

.before = "weight") %>% # add this column left of "weight" column
ungroup() # remove the grouping from above

26

https://github.com/tidyverse/tidyr#related-work
https://github.com/tidyverse/tidyr#related-work

We can now use pivot_wider() and create a wide formatted version of the long_dat table
and save it as wide_dat. Note that the function has multiple arguments you can use, but for
me it is usually enough to use names from = and values_from =. In the former you provide
the name of the column whose entries should be the names of the new columns in the wide
formatted data. In the latter you provide the name of the column whose values should be
written in the new columns in the wide formatted data:

long_dat

A tibble: 9 x 3
nr weight group

<int> <dbl> <fct>
1 1 4.17 ctrl
2 2 5.58 ctrl
3 3 5.18 ctrl
4 1 4.81 trt1
5 2 4.17 trt1
6 3 4.41 trt1
7 1 6.31 trt2
8 2 5.12 trt2
9 3 5.54 trt2

wide_dat <- long_dat %>%
pivot_wider(names_from = "group",

values_from = "weight")

wide_dat

A tibble: 3 x 4
nr ctrl trt1 trt2

<int> <dbl> <dbl> <dbl>
1 1 4.17 4.81 6.31
2 2 5.58 4.17 5.12
3 3 5.18 4.41 5.54

We can use pivot_longer to reverse the step above, i.e. create a long formatted version of
the wide_dat table. Again, the function has multiple arguments you can use, but for me it is
usually enough to use cols =, names_to = and values_to =. In the first one, you provide the
names of the columns who should be reduced to fewer columns with more rows. In the other
two you simply give the names that the created columns should have instead of the default
name and value. Note that it is sometimes easier to provide the names of columns that should
not go into cols = (right) instead of the ones that should (left).

27

wide_dat %>%
pivot_longer(

cols = c(ctrl, trt1, trt2),
names_to = "group",
values_to = "weight"

)

A tibble: 9 x 3
nr group weight

<int> <chr> <dbl>
1 1 ctrl 4.17
2 1 trt1 4.81
3 1 trt2 6.31
4 2 ctrl 5.58
5 2 trt1 4.17
6 2 trt2 5.12
7 3 ctrl 5.18
8 3 trt1 4.41
9 3 trt2 5.54

wide_dat %>%
pivot_longer(

cols = -nr,
names_to = "group",
values_to = "weight"

)

A tibble: 9 x 3
nr group weight

<int> <chr> <dbl>
1 1 ctrl 4.17
2 1 trt1 4.81
3 1 trt2 6.31
4 2 ctrl 5.58
5 2 trt1 4.17
6 2 trt2 5.12
7 3 ctrl 5.18
8 3 trt1 4.41
9 3 trt2 5.54

28

Additional Resources

• 12.3 Pivoting in R for data science (Wickham and Grolemund 2017)
• Pivoting with tidyr
• tidyr cheat sheet

6 forcats

In my experience, R beginners really only care about the difference between factor and
character variables once the factor level order is not as they want it to be - typically on the
x-axis of a plot. Luckily, {forcats} can deal with this.

In the following example, we create a column fct that is a copy of the column chr, except
that they are formatted as factor and character, respectively.

dat <- tribble(
~val, ~chr,

10, "Ctrl",
15, "A",
8, "B"

) %>%
mutate(fct = as.factor(chr))

ggplot(dat) +
aes(y = val, x = fct) +
geom_col()

29

https://r4ds.had.co.nz/tidy-data.html?q=pivot#pivoting
https://tidyr.tidyverse.org/articles/pivot.html
https://github.com/rstudio/cheatsheets/blob/main/tidyr.pdf
https://forcats.tidyverse.org/

0

5

10

15

A B Ctrl
fct

va
l

Even though the data is sorted so that Ctrl is first, then A, then B, the x-Axis is sorted
differently4. This is because factor levels are always sorted alphabetically by default. We can
reorder them via different functions in {forcats}:

dat <- dat %>%
mutate(

fct2 = fct_relevel(fct, c("Ctrl", "A", "B")),
fct3 = fct_reorder(fct, val, mean)
)

str(dat)

tibble [3 x 5] (S3: tbl_df/tbl/data.frame)
$ val : num [1:3] 10 15 8
$ chr : chr [1:3] "Ctrl" "A" "B"
$ fct : Factor w/ 3 levels "A","B","Ctrl": 3 1 2
$ fct2: Factor w/ 3 levels "Ctrl","A","B": 1 2 3
$ fct3: Factor w/ 3 levels "B","Ctrl","A": 2 3 1

Above are just two popular examples for sorting factor levels: fct_relevel sorts the levels
manually by providing a vector with the level names in the order they should appear, while

4It does not make a difference here, whether we put x = chr or x = fct in the ggplot statement.

30

fct_reorder here sorts the levels according to their respective group mean5 of the values in
the val column.

You can see that it worked in the output of str(dat) above and in the plots below.

ggplot(dat) +
aes(y = val, x = fct2) +
geom_col()

0

5

10

15

Ctrl A B
fct2

va
l

ggplot(dat) +
aes(y = val, x = fct3) +
geom_col()

5Yes, the mean in this example is not really a mean, since there is only one number per group.

31

0

5

10

15

B Ctrl A
fct3

va
l

7 stringr

In computer programming, a string is traditionally a sequence of characters (or text if you
will). Taken directly from the documentation:

Strings are not glamorous, high-profile components of R, but they do play a big
role in many data cleaning and preparation tasks. The stringr package provide a
cohesive set of functions designed to make working with strings as easy as possible.
If you’re not familiar with strings, the best place to start is the chapter on strings
in R for Data Science.

Below are some brief examples of {stringr} functions I use regularly. To show what they can
do, let’s first create some strings6:

a_string <- " a string with irregular spaces. "
strings <-c("String 1", "String Two", "third string")

To remove part of a string, use str_remove(). To replace it, use str_replace().

strings %>%
str_remove(pattern = "ing")

6Note that while I create two vectors in this example, this will work just as well with columns of a table via
‘table %>% mutate(new = stringrfunction(old))‘

32

https://stringr.tidyverse.org/
https://r4ds.had.co.nz/strings.html
https://r4ds.had.co.nz/strings.html
https://stringr.tidyverse.org/

[1] "Str 1" "Str Two" "third str"

strings %>%
str_replace(pattern = "ing",

replacement = ".")

[1] "Str. 1" "Str. Two" "third str."

The functions str_trim() and str_squish() help remove unnecessary spaces from strings.
The former removes them only from from start and end, while the latter also reduces repeated
whitespace inside a string.

a_string %>%
str_trim()

[1] "a string with irregular spaces."

a_string %>%
str_squish()

[1] "a string with irregular spaces."

Finally, you can check if a pattern appears in a string, or extract part of a string:

strings %>%
str_detect(pattern = "Two")

[1] FALSE TRUE FALSE

strings %>%
str_sub(start = 1, end = 4)

[1] "Stri" "Stri" "thir"

33

Additional Resources

• 14 Strings in R for data science (Wickham and Grolemund 2017)
• stringr cheat sheet
• Regular expressions

Álvarez, Adolfo. 2021. “Plumbers, Chains, and Famous Painters: The (Updated) History
of the Pipe Operator in r.” Adolfo Álvarez Blog. http://adolfoalvarez.cl/blog/2021-09-16-
plumbers-chains-and-famous-painters-the-history-of-the-pipe-operator-in-r/.

Scherer, Cédric. 2022. “A Ggplot2 Tutorial for Beautiful Plotting in r.” Cédric Scherer Blog.
https://www.cedricscherer.com/2019/08/05/a-ggplot2-tutorial-for-beautiful-plotting-in-
r/.

Wickham, Hadley, and Garrett Grolemund. 2017. R for Data Science: Import, Tidy, Trans-
form, Visualize, and Model Data. 1st ed. O’Reilly Media, Inc. https://r4ds.had.co.nz/.

34

https://r4ds.had.co.nz/strings.html
https://github.com/rstudio/cheatsheets/blob/main/strings.pdf
https://stringr.tidyverse.org/articles/regular-expressions.html
http://adolfoalvarez.cl/blog/2021-09-16-plumbers-chains-and-famous-painters-the-history-of-the-pipe-operator-in-r/
http://adolfoalvarez.cl/blog/2021-09-16-plumbers-chains-and-famous-painters-the-history-of-the-pipe-operator-in-r/
https://www.cedricscherer.com/2019/08/05/a-ggplot2-tutorial-for-beautiful-plotting-in-r/
https://www.cedricscherer.com/2019/08/05/a-ggplot2-tutorial-for-beautiful-plotting-in-r/
https://r4ds.had.co.nz/

	Tables
	data.frame
	tibble

	Plots
	The pipe operator
	No pipe - intermediate steps
	No pipe - nesting functions
	Pipe!

	dplyr verbs
	mutate()
	select()
	filter()
	arrange()
	summarise()

	long/wide format
	forcats
	stringr

