
Useful things
Paul Schmidt

2023-11-07

A personal collection of useful R packages and more.

Table of contents

1 {broom} 2

2 {conflicted} 3

3 {desplot} 4

4 {dlookr} 4

5 {ggtext} 5

6 {here} 7

7 {insight} 7

8 {janitor} 7

9 Keyboard shortcuts 7

10 {modelbased} 8

11 {openxlsx} 8

12 {pacman} 8

13 {patchwork} 9

14 {performance} 9

15 {readxl} 9

1

16 {reprex} 9

17 {scales} 9

18 %in% and %not_in% 9

19 system('open "file.png"') 10

This chapter is a collection of things I wish I had known earlier in my years using R and that
I hope can be of use to you. Sections are named after R packages or whatever applies and
sorted alphabetically.

1 {broom}

In R, results from statistical tests, models etc. are often formatted in a way that may not
be optimal for further processing steps. Luckily, {broom} will format the results of the most
common functions into tidy data structures.

Correlation Analysis for built-in example data "mtcars"
mycor <- cor.test(mtcars$mpg, mtcars$disp)
mycor

Pearson's product-moment correlation

data: mtcars$mpg and mtcars$disp
t = -8.7472, df = 30, p-value = 9.38e-10
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.9233594 -0.7081376
sample estimates:

cor
-0.8475514

library(broom)
tidy(mycor)

A tibble: 1 x 8
estimate statistic p.value parameter conf.low conf.high method alternative

<dbl> <dbl> <dbl> <int> <dbl> <dbl> <chr> <chr>
1 -0.848 -8.75 9.38e-10 30 -0.923 -0.708 Pearson'~ two.sided

2

https://broom.tidymodels.org/
https://broom.tidymodels.org/articles/available-methods.html
https://broom.tidymodels.org/articles/available-methods.html
https://www.jstatsoft.org/article/view/v059i10

2 {conflicted}

Sometimes, different packages have different functions with identical names. A famous example
is the function filter(), which exists in {stats} and {dplyr}. If both of these packages are
loaded, it is not clear which of the two functions should be used. This is called a function
conflict and it is especially tricky here since {stats} is always loaded. By default, R will simply
pick the package that was loaded later - which is obviously not optimal.

One way of dealing with function conflicts is by using the packagename::functionname()
method, because when writing dplyr::filter() instead of filter() it is no longer am-
biguous which function you are referring to.

Another way of dealing with function conflicts more explicitly is by loading the {conflicted}
package. Once it is loaded, function conflicts will lead to an Error that forces you to deal
with the issue:

library(conflicted)
library(dplyr)

PlantGrowth %>% filter(weight > 6)

Error:
! [conflicted] filter found in 2 packages.
Either pick the one you want with `::`:
* dplyr::filter
* stats::filter
Or declare a preference with `conflicts_prefer()`:
* `conflicts_prefer(dplyr::filter)`
* `conflicts_prefer(stats::filter)`

As you can see, it first suggests using the packagename::functionname() method mentioned
above, but also points to the conflict_prefer() function. By running this function once in
the beginning of the script, R will always use the function from the package that you declared
the “winner”:

library(conflicted)
library(dplyr)

conflicts_prefer(dplyr::filter)

PlantGrowth %>% filter(weight > 6)

3

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/filter
https://dplyr.tidyverse.org/reference/filter.html
https://stackoverflow.com/questions/35240971/what-are-the-double-colons-in-r
https://stackoverflow.com/questions/35240971/what-are-the-double-colons-in-r

weight group
1 6.11 ctrl
2 6.03 trt1
3 6.31 trt2
4 6.15 trt2

3 {desplot}

{desplot} makes it easy to plot experimental designs of field trials in agriculture. However,
you do need two columns that provide the x and y coordinates of the individual plots on your
field.

TO DO

4 {dlookr}

When providing descriptive statistics tables, one may find the number of relevant measures
become annoyingly large so that even with the {tidyverse}, several lines of code are necessary.
Here are just five measures, and they are not even including the na.rm = TRUE argument,
which is necessary for data with missing values.

library(tidyverse)

PlantGrowth %>%
group_by(group) %>%
summarise(

mean = mean(weight),
stddev = sd(weight),
median = median(weight),
min = min(weight),
max = max(weight)

)

A tibble: 3 x 6
group mean stddev median min max
<fct> <dbl> <dbl> <dbl> <dbl> <dbl>

1 ctrl 5.03 0.583 5.15 4.17 6.11
2 trt1 4.66 0.794 4.55 3.59 6.03
3 trt2 5.53 0.443 5.44 4.92 6.31

4

https://kwstat.github.io/desplot/
https://www.statology.org/na-rm/

Obviously, there are multiple packages who try to address just that. The one I’ve been using for
some time now is {dlookr} with its describe() function. It actually provides more measures
than I usually need1, but it has everything I want and I disregard the rest (via select()).

PlantGrowth %>%
group_by(group) %>%
dlookr::describe(weight)

A tibble: 3 x 27
described_variables group n na mean sd se_mean IQR skewness
<chr> <fct> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl>

1 weight ctrl 10 0 5.03 0.583 0.184 0.743 0.321
2 weight trt1 10 0 4.66 0.794 0.251 0.662 0.659
3 weight trt2 10 0 5.53 0.443 0.140 0.467 0.673
i 18 more variables: kurtosis <dbl>, p00 <dbl>, p01 <dbl>, p05 <dbl>,
p10 <dbl>, p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>,
p60 <dbl>, p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>,
p99 <dbl>, p100 <dbl>

Note

It is intentional that I did not actually load the {dlookr} package, but instead used its
describe() function via the packagename::functionname() method. This is because of a
minor bug in the {dlookr} package described here, which is only relevant if you are using
the package with knitr/Rmarkdown/quarto. I am using quarto to generate this website
and thus I avoid loading the package. This is fine for me, since I usually only need this
one function one time during an analysis. It is also fine for you, since the code works the
same way in a standard R script.

5 {ggtext}

Adding long text to plots created via {ggplot2} is problematic, since you have to in-
sert line breaks yourself. However, {ggext}’s geom_textbox() for data labels and
element_textbox_simple() for title, caption etc. will automatically add line breaks:

longtext <- "Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum."

1Keep in mind that p00 is the 0th percentile and thus the minimum. Analogously, p50 is the median and p100
the maximum.

5

https://choonghyunryu.github.io/dlookr/
https://stackoverflow.com/questions/35240971/what-are-the-double-colons-in-r
https://github.com/choonghyunryu/dlookr/issues/79
https://wilkelab.org/ggtext/

library(ggplot2)

ggplot() +

aes(y = 1, x = 1, label = longtext) +
geom_label() +
labs(caption = longtext)

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum.

0.950

0.975

1.000

1.025

1.050

0.950 0.975 1.000 1.025 1.050
x

y

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum.

library(ggtext)

ggplot() +
theme(plot.caption =

element_textbox_simple()) +
aes(y = 1, x = 1, label = longtext) +
geom_textbox() +
labs(caption = longtext)

6

Lorem ipsum dolor sit
amet, consetetur
sadipscing elitr, sed diam
nonumy eirmod tempor
invidunt ut labore et dolore
magna aliquyam erat, sed
diam voluptua. At vero eos
et accusam et justo duo
dolores et ea rebum.

0.950

0.975

1.000

1.025

1.050

0.950 0.975 1.000 1.025 1.050
x

y

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy
eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam
voluptua. At vero eos et accusam et justo duo dolores et ea rebum.

6 {here}

TO DO

7 {insight}

TO DO

8 {janitor}

TO DO

9 Keyboard shortcuts

Here are shortcuts I actually use regularly in RStudio:

Shortcut Description
CTRL+ENTER Run selected lines of code
CTRL+C Convert all selected lines to comment
CTRL+SHIFT+M Insert %>%

7

https://easystats.github.io/insight/reference/format_p.html

Shortcut Description
CTRL+SHIFT+R Insert code section header
CTRL+LEFT/RIGHT Jump to Word
CTRL+SHIFT+LEFT/RIGHT Select Word
ALT+LEFT/RIGHT Jump to Line Start/End
ALT+SHIFT+LEFT/RIGHT Select to Line Start/End
CTRL+A Highlight everything (to run the entire code)
CTRL+Z Undo

Keyboard shortcuts can be customized in RStudio as described here.

10 {modelbased}

TO DO

11 {openxlsx}

TO DO

12 {pacman}

You now know how to install and load R packages the standard way. However, over the years
I switched to using the function p_load() from the {pacman} package instead of library()
and install.packages(). The reason is simple: Usually R-scripts start with multiple lines
of library() statements that load the necessary packages. However, when this code is run
on a different computer, the user may not have all these packages installed and will therefore
get an error message. This can be avoided by using the p_load(), because it

• loads all packages that are installed and
• installs and loads all packages that are not installed.

Obviously, {pacman} itself must first be installed (the standard way). Moreover, you
may now think that in order to use p_load() we do need a single library(pacman) first.
However, we can avoid this by writing pacman::p_load() instead. Simply put, writing
package_name::function_name() makes sure that this explicit function from this explicit
package is being used. Additionally, R actually lets you use this function without loading the
corresponding package. Thus, we now arrived at the way I handle packages at the beginning
of all my R-scripts:

8

https://support.rstudio.com/hc/en-us/articles/206382178-Customizing-Keyboard-Shortcuts-in-the-RStudio-IDE
https://easystats.github.io/modelbased/articles/estimate_response.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/ns-dblcolon.html

pacman::p_load(
package_name_1,
package_name_2,
package_name_3

)

13 {patchwork}

TO DO

14 {performance}

TO DO

15 {readxl}

TO DO

16 {reprex}

TO DO

17 {scales}

TO DO

18 %in% and %not_in%

R has the built-in function %in% which checks whether something is present in a vector.

treatments <- c("Ctrl", "A", "B")

Not only can we checke which treatments are present in our treatment vector (left), but we
can also easily keep only those that are (right).

9

c("A", "D") %in% treatments

[1] TRUE FALSE

c("A", "D") %>% .[. %in% treatments]

[1] "A"

Not built-in, for some reason, is the opposite of that function - checking whether something is
not present. Yet, we can quickly built our own function that does exactly that:

`%not_in%` <- Negate(`%in%`)

c("A", "D") %not_in% treatments

[1] FALSE TRUE

c("A", "D") %>% .[. %not_in% treatments]

[1] "D"

19 system('open "file.png"')

TO DO

10

https://gist.github.com/SchmidtPaul/5cd96b53449f5f50cbda725d4cdacf9b

	{broom}
	{conflicted}
	{desplot}
	{dlookr}
	{ggtext}
	{here}
	{insight}
	{janitor}
	Keyboard shortcuts
	{modelbased}
	{openxlsx}
	{pacman}
	{patchwork}
	{performance}
	{readxl}
	{reprex}
	{scales}
	%in% and %not_in%
	system('open "file.png"')

