# One-way augmented design 

Paul Schmidt

2023-11-18

One-way ANOVA \& pairwise comparison post hoc tests in a non-resolvable augmented design.

## Table of contents

1 Data ..... 2
1.1 Import ..... 2
1.2 Format ..... 3
1.3 Explore ..... 3
2 Model ..... 6
3 ANOVA ..... 7
4 Mean comparison ..... 8
5 Bonus ..... 11
5.1 Variance components ..... 11

```
# (install &) load packages
pacman::p_load(
    car,
    conflicted,
    desplot,
    emmeans,
    ggtext,
    lme4,
    lmerTest,
    multcomp,
    multcompView,
```

```
    tidyverse)
```

```
# handle function conflicts
conflicts_prefer(dplyr::filter)
conflicts_prefer(dplyr::select)
conflicts_prefer(lmerTest::lmer)
```


## 1 Data

This example is taken from Chapter "3.7 Analysis of a non-resolvable augmented design" of the course material "Mixed models for metric data (3402-451)" by Prof. Dr. Hans-Peter Piepho. It considers data published in Petersen (1994) from a yield trial laid out as an augmented design. The genotypes (gen) include 3 standards (st, ci, wa) and 30 new cultivars of interest. The trial was laid out in 6 blocks (block). The 3 standards are tested in each block, while each entry is tested in only one of the blocks. Therefore, the blocks are "incomplete blocks".

### 1.1 Import

```
# data is available online:
path <- "https://raw.githubusercontent.com/SchmidtPaul/dsfair_quarto/master/data/Petersen1
dat <- read_csv(path) # use path from above
dat
# A tibble: 48 x 5
        gen yield block row col
        <chr> <dbl> <chr> <dbl> <dbl>
    1 st 2972 I 1
    2 14 2405 I 2 1
    326 2855 I 3 1
    4 ci 2592 I 4
    5 17 2572 I 5 1
    6 wa 2608 I 6 1
    7 22 2705 I 
    8 13 2391 I 8 1
    9 st 3122 II 1 2
10 ci 3023 II 2
# i 38 more rows
```


### 1.2 Format

Before anything, the columns gen and block should be encoded as factors, since R by default encoded them as character.

```
dat <- dat %>%
    mutate(across(c(gen, block), ~ as.factor(.x)))
```


### 1.3 Explore

We make use of dlookr: :describe() to conveniently obtain descriptive summary tables. Here, we get can summarize per block and per cultivar.

```
dat %>%
    group_by(gen) %>%
    dlookr::describe(yield) %>%
    select(2:sd) %>%
    arrange(desc(n), desc(mean))
# A tibble: 33 x 5
        gen n na mean sd
        <fct> <int> <int> <dbl> <dbl>
    st 6 0 2759. 832.
    2 ci 6 0 2726. 711.
    3 wa 6 0 2678. 615.
    419 1 0 3643 NA
    511 1 0 0 3380 NA
    607 1 0 3265 NA
    703 1 0 3055 NA
    804 1 0 3018 NA
    901 1 0 3013 NA
10 30 1 0 2955 NA
# i 23 more rows
dat %>%
    group_by(block) %>%
    dlookr::describe(yield) %>%
    select(2:sd) %>%
    arrange(desc(mean))
```

```
# A tibble: 6 x 5
    block n na mean sd
    <fct> <int> <int> <dbl> <dbl>
1 VI 8 0 3205. 417.
2 II 8 0 2864. 258.
3 IV 8 0 2797. 445.
4 I 8 0 2638. 202.
5 III 8 0 2567. 440.
6 V 8 0 1390. 207.
```

Additionally, we can decide to plot our data. Note that we here define custom colors for the genotypes, where all unreplicated entries get a shade of green and all replicated checks get a shade of red.

```
greens30 <- colorRampPalette(c("#bce2cc", "#00923f"))(30)
oranges3 <- colorRampPalette(c("#e4572e", "#ad0000"))(3)
gen_cols <- set_names(c(greens30, oranges3), nm = levels(dat$gen))
ggplot(data = dat) +
    aes(
        y = yield,
        x = gen,
        shape = block
    ) +
    geom_point() +
        scale_x_discrete(
        name = "Genotype"
    ) +
    scale_y_continuous(
        name = "Yield",
        limits = c(0, NA),
        expand = expansion(mult =c(0, 0.05))
    ) +
    scale_color_manual(
        guide = "none",
        values = gen_cols
    ) +
    scale_shape_discrete(
        name = "Block"
    ) +
    guides(shape = guide_legend(nrow = 1)) +
```

```
theme_bw () +
theme (
    legend.position \(=\) "top",
    axis.text. \(x=\) element_text (size = 7)
)
```

Block • I © II • III + IV ® V * VI


Finally, since this is an experiment that was laid with a certain experimental design (= a non-resolvable augmented design) - it makes sense to also get a field plan. This can be done via desplot() from \{desplot\}.

```
desplot(
    data = dat,
    flip = TRUE, # row 1 on top, not on bottom
    form = gen ~ col + row, # fill color per cultivar
    col.regions = gen_cols, # custom fill colors
    out1 = block, # line between blocks
    text = gen, # cultivar names per plot
    cex = 1, # cultviar names: font size
    shorten = FALSE, # cultivar names: don't abbreviate
    main = "Field layout", # plot title
    show.key = FALSE # hide legend
```

```
)
```

Field layout

| $s t$ | $s t$ | $s t$ |
| :---: | :---: | :---: |
| 14 | ci | 18 |
| 26 | 04 | 27 |
| ci | 15 | ci |
| 17 | 30 | 25 |
| wa | 03 | 28 |
| 22 | $w a$ | 05 |
| 13 | 24 | wa |
| st | st | st |
| 09 | 02 | 29 |
| 06 | 21 | 07 |
| ci | wa | ci |
| wa | ci | 01 |
| 11 | 10 | $w a$ |
| 23 | 08 | 12 |
|  | 16 | 19 |

## 2 Model

Finally, we can decide to fit a linear model with yield as the response variable and gen as fixed effects, since our goal is to compare them to each other. Since the trial was laid out in blocks, we also need block effects in the model, but these can be taken either as a fixed or as random effects. Since our goal is to compare genotypes, we will determine which of the two models we prefer by comparing the average standard error of a difference (s.e.d.) for the comparisons between adjusted genotype means - the lower the s.e.d. the better.

```
# blocks as fixed (linear model)
mod_fb <- lm(yield ~ gen + block,
    data = dat)
mod_fb %>%
    emmeans(pairwise ~ "gen",
        adjust = "tukey") %>%
    pluck("contrasts") %>% # extract diffs
    as_tibble() %>% # format to table
```

```
    pull("SE") %>% # extract s.e.d. column
    mean() # get arithmetic mean
[1] 461.3938
# blocks as random (linear mixed model)
mod_rb <- lmer(yield ~ gen + (1 | block),
        data = dat)
mod_rb %>%
    emmeans(pairwise ~ "gen",
        adjust = "tukey",
        lmer.df = "kenward-roger") %>%
    pluck("contrasts") %>% # extract diffs
    as_tibble() %>% # format to table
    pull("SE") %>% # extract s.e.d. column
    mean() # get arithmetic mean
[1] 462.0431
```

As a result, we find that the model with fixed block effects has the slightly smaller s.e.d. and is therefore more precise in terms of comparing genotypes.

A Model assumptions met? (click to show)
It would be at this moment (i.e. after fitting the model and before running the ANOVA), that you should check whether the model assumptions are met. Find out more in the summary article "Model Diagnostics"

## 3 ANOVA

Based on our model, we can then conduct an ANOVA:

```
ANOVA <- car::Anova(mod_fb, type = "III")
ANOVA
Anova Table (Type III tests)
```

```
Response: yield
    Sum Sq Df F value Pr(>F)
(Intercept) 3073607 1 33.738 0.0001710 ***
gen 4095905 32 1.405 0.2930113
block 6968486 5 15.298 0.0002082 ***
Residuals 911027 10
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Accordingly, the ANOVA's F-test found the cultivar effects to be statistically significant ( $\mathrm{p}=$ 0.293 ). Additionally, the block effects are also statistically significant ( $\mathrm{p}<.001^{* * *}$ ), but this is only of secondary concern for us.

## 4 Mean comparison

Besides an ANOVA, one may also want to compare adjusted yield means between cultivars via post hoc tests (t-test, Tukey test etc.).

```
mean_comp <- mod_fb \%>\%
    emmeans (specs \(=\sim\) gen) \(\%>\%\) \# adj. mean per genotype
    cld(adjust = "Tukey", Letters = letters) \# compact letter display (CLD)
mean_comp
    gen emmean \(S E\) df lower.CL upper.CL .group
    \(12 \quad 163234110 \quad 164 \quad 3100\) a
    \(06 \quad 1823 \quad 34110 \quad 355 \quad 3291\) a
    \(28 \quad 186234110 \quad 394 \quad 3330\) a
    \(09 \quad 194334110 \quad 475 \quad 3411\) a
    \(05 \quad 202434110 \quad 556 \quad 3492\) a
    \(29 \quad 216234110 \quad 694 \quad 3630\) a
    \(01 \quad 226034110 \quad 792 \quad 3728\) a
    \(15 \quad 232434110 \quad 856 \quad 3792\) a
    \(02 \quad 233034110 \quad 862 \quad 3798\) a
    \(20 \quad 234534110 \quad 877 \quad 3813\) a
    \(13 \quad 238834110 \quad 920 \quad 3856\) a
    \(14 \quad 240234110 \quad 934 \quad 3870\) a
    \(23 \quad 244534110 \quad 977\) 3913 a
    \(07 \quad 251234110 \quad 1044 \quad 3980\) a
    \(08 \quad 252834110 \quad 1060 \quad 3996\) a
```

| 18 | 2562 | 341 | 10 | 1094 | 4030 | a |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | 2568 | 341 | 10 | 1100 | 4036 | a |
| 17 | 2569 | 341 | 10 | 1101 | 4037 | a |
| 24 | 2630 | 341 | 10 | 1162 | 4098 | a |
| wa | 2678 | 123 | 10 | 2148 | 3208 | a |
| 22 | 2702 | 341 | 10 | 1234 | 4170 | a |
| ci | 2726 | 123 | 10 | 2195 | 3256 | a |
| st | 2759 | 123 | 10 | 2229 | 3289 | a |
| 16 | 2770 | 341 | 10 | 1302 | 4238 | a |
| 25 | 2784 | 341 | 10 | 1316 | 4252 | a |
| 30 | 2802 | 341 | 10 | 1334 | 4270 | a |
| 27 | 2816 | 341 | 10 | 1348 | 4284 | a |
| 26 | 2852 | 341 | 10 | 1384 | 4320 | a |
| 04 | 2865 | 341 | 10 | 1397 | 4333 | a |
| 19 | 2890 | 341 | 10 | 1422 | 4358 | a |
| 03 | 2902 | 341 | 10 | 1434 | 4370 | a |
| 21 | 2963 | 341 | 10 | 1495 | 4431 | a |
| 11 | 3055 | 341 | 10 | 1587 | 4523 | a |

```
Results are averaged over the levels of: block
Confidence level used: 0.95
Conf-level adjustment: sidak method for 33 estimates
P value adjustment: tukey method for comparing a family of 33 estimates
significance level used: alpha = 0.05
NOTE: If two or more means share the same grouping symbol,
    then we cannot show them to be different.
    But we also did not show them to be the same.
```

It can be seen that while some genotypes have a higher yield than others, no differences are found to be statistically significant here. Accordingly, notice that e.g. for gen 11, which is the genotype with the highest adjusted yield mean $(=3055)$, its lower confidence limit $(=1587)$ includes gen 12, which is the genotype with the lowest adjusted yield mean $(=1632)$.

Note that if you would like to see the underlying individual contrasts/differences between adjusted means, simply add details $=$ TRUE to the cld() statement. Furthermore, check out the Summary Article "Compact Letter Display".

Finally, we can create a plot that displays both the raw data and the results, i.e. the comparisons of the adjusted means that are based on the linear model.

```
# reorder genotype factor levels according to adjusted mean
my_caption <- "Dots represent raw data. Red diamonds and error bars represent adjusted mea
```

```
ggplot() +
    # green/red dots representing the raw data
    geom_point(
        data = dat,
        aes(y = yield, x = gen, color = gen)
    ) +
    # red diamonds representing the adjusted means
    geom_point(
        data = mean_comp,
        aes(y = emmean, x = gen),
        shape = 18,
        color = "red",
        position = position_nudge(x = 0.2)
    ) +
    # red error bars representing the confidence limits of the adjusted means
    geom_errorbar(
        data = mean_comp,
        aes(ymin = lower.CL, ymax = upper.CL, x = gen),
        color = "red",
        width = 0.1,
        position = position_nudge(x = 0.2)
    ) +
    # red letters
    geom_text(
        data = mean_comp,
        aes(y = upper.CL, x = gen, label = str_trim(.group)),
        color = "red",
        vjust = -0.2,
        position = position_nudge(x = 0.2)
    ) +
    scale_color_manual(
        guide = "none",
        values = gen_cols
    ) +
    scale_x_discrete(
        name = "Cultivar",
        limits = as.character(mean_comp$gen)
    ) +
    scale_y_continuous(
        name = "Yield",
        limits = c(0, NA),
```

```
    expand = expansion(mult = c(0, 0.1))
) +
labs(caption = my_caption) +
theme_classic() +
theme(plot.caption = element_textbox_simple(margin = margin(t = 5)),
plot.caption.position = "plot",
axis.text.x = element_text(size = 7))
```



Dots represent raw data. Red diamonds and error bars represent adjusted means with 95\% confidence limits per cultivar. Means followed by a common letter are not significantly different according to the Tukey-test.

## 5 Bonus

Here are some other things you would maybe want to look at for the analysis of this dataset.

### 5.1 Variance components

To extract variance components from our models, we unfortunately need different functions per model since only of of them is a mixed model and we used different functions to fit them.

```
# Residual Variance
summary(mod_fb)$sigma^2
```

[1] 91102.66
\# Both Variance Components
as_tibble(VarCorr(mod_rb))
\# A tibble: 2 x 5 grp var1 var2 vcov sdcor <chr> <chr> <chr> <dbl> <dbl>
1 block (Intercept) <NA> 434198. 659.
2 Residual <NA> <NA> 91103. 302.
Petersen, Roger G. 1994. Agricultural Field Experiments. CRC Press. https://doi.org/10. 1201/9781482277371.

